Nuclear Phenomenology Research

The nuclear phenomenology research group runs the Data Analysis Center operating under the Institute for Nuclear Studies (INS), one of the University’s leading Centers of Excellence, that provides the umbrella for all research in nuclear physics at GW. 

The group maintains the world’s most referenced and cited database for the spectroscopic studies of non-strange baryons in hadronic and electromagnetic nuclear processes. Our analyses are widely recognized for their importance for extracting the fundamental properties of nuclear resonances from medium-energy nuclear physics data obtained at laboratories around the world. External users access our database over the internet and interactively compare numerous fits and models associated with the reactions we study.

The scope of user-determined comparisons between data and theory is unique to our system. Close ties with national and international laboratories throughout the world, in support of various experimental programs, allow us to provide the tools necessary for planning future experiments and testing new theoretical models, thus providing invaluable services to the worldwide nuclear physics community.

Meson photoproduction, hadron elastic scattering, and pion electroproduction partial-wave analyses are implemented as part of our comprehensive program exploring the nature of nucleon resonances. The objective of this program is the determination of all relevant characteristics of these resonances. Furthermore, there is a considerable effort to search for “hidden” or “missing” resonances predicted by QCD-inspired models. Students working with our group can draw on the data available from GW experiments at international nuclear laboratories such as JLab and Mainz to construct a research project that bridges the gap between experiment and theory.

To learn more, visit the Nuclear Phenomenology website.